Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 256(Pt 2): 128290, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992926

RESUMO

The main purpose of this paper was to systematically evaluate the effect of lignin, which was fractioned by green solvents into different molecular weights and used as polyol in the production of polyurethane foams (PUF). The results indicated that the foams prepared with the lower molecular weight lignin had uniform and complete pore structure and improved the mechanical strength. However, the higher molecular weight fraction lignin improved the density and thermal stability of the foam more significantly at the expense of inferior mechanical strength and pore structure deficiency. When the substitution degree of lignin in the PUF was 2 %-30 %, 99.13 % of the lowest molecular weight lignin was participated in the reaction to produce PUF, which improved the elongation at break (Eb) and tensile strength (Ts) of PUF to 834 % and 0.90 MPa, respectively. Also, thermal stability and the amount of unreacted lignin in PUF were increased at a higher substitution degree of lignin in PUF.


Assuntos
Lignina , Polímeros , Poliuretanos , Peso Molecular
2.
ACS Omega ; 7(48): 44287-44297, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506206

RESUMO

Polystyrene (PS) is widely used in our daily life, but it is flammable and produces a large number of toxic gases and high-temperature flue gases in the combustion process, which limit its application. Improving the flame retardancy of PS has become an urgent problem to be solved. In addition, in view of the disadvantage that small-molecule flame retardants can easily migrate from polymers during use, which leads to the gradual reduction of the flame retardant effect or even loss of flame retardant performance, and the outstanding advantages of ATRP technology in polymer structure design and function customization, we used ATRP technology to synthesize the high-molecular-weight bifunctional additive PFAA-DOPO-b-PDEAEMA, which has flame retardant properties and antistatic properties. The chemical structure and molecular weight of PFAA-DOPO-b-PDEAEMA were characterized by FTIR, 1H NMR, GPC, and XPS. When the addition of PFAA-DOPO-b-PDEAEMA was 15 wt %, the limiting oxygen index (LOI) of polystyrene composites was 28.4%, which was 53.51% higher than that of pure polystyrene, the peak of the heat release rate (pHRR) was 37.61% lower than that of pure polystyrene, UL-94 reached V-0 grade, and the flame retardant index (FRI) was 2.98. In addition, when the PFAA-DOPO-b-PDEEMA content is 15 wt %, the surface resistivity and volume resistivity of polystyrene composites are 2 orders of magnitude lower than those of polystyrene. This research work provides a reference for the design of bifunctional and even multifunctional polymers.

3.
Science ; 377(6608): 870-874, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35981022

RESUMO

The ambient metastability of the rock-salt phase in well-defined model systems comprising nanospheres or nanorods of cadmium selenide, cadmium sulfide, or both was investigated as a function of composition, initial crystal phase, particle structure, shape, surface functionalization, and ordering level of their assemblies. Our experiments show that these nanocrystal systems exhibit ligand-tailorable reversibility in the rock salt-to-zinc blende solid-phase transformation. Interparticle sintering was used to engineer kinetic barriers in the phase transformation to produce ambient-pressure metastable rock-salt structures in a controllable manner. Interconnected nanocrystal networks were identified as an essential structure that hosted metastable high-energy phases at ambient conditions. These findings suggest general rules for transformation-barrier engineering that are useful in the rational design of next-generation materials.

4.
Des Monomers Polym ; 24(1): 208-215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345199

RESUMO

Rigid polyurethane foam (RPUF) as a filling material that can enhance the crashworthiness of thin-walled tubes. GO-HGMS hybrid was prepared by solution blending of graphene oxide (GO) and hollow glass microspheres (HGMS). The effect of the composite on the compression properties of RPUF was investigated. The GO-HGMS hybrid was characterized by fourier transform infrared spectroscopy (FTIR), x-ray diffraction(XRD), and scanning electron microscopy (SEM). The compression test and microstructure results show that the best compression performance and the largest apparent density of the composite foam were obtained when the hybrid content was 4 wt %. In addition, the compression test results of empty tubes (ET) and foam-filled tubes (FFT) under lateral load indicate that the combination of lightweight foamed material and thin-walled tube improves the stability of thin-walled tube deformation and the ability of the structure to resist deformation. GO-HGMS/RPUF as the filling material of thin-walled tube structure greatly improves the bearing capacity and energy absorption level of ET.

5.
ACS Omega ; 6(4): 3427-3433, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553961

RESUMO

We have designed a new magnetic targeting drug carrier Fe3O4-PVA with a core of triiron tetroxide (Fe3O4) and a shell made of polyvinyl alcohol (PVA) to improve the hydrophilicity of Fe3O4. With adriamycin hydrochloride as a model drug, this study goes on to measure the drug carrier performance of Fe3O4-PVA. In addition, the thermal stability and enthalpy of thermal decomposition of Fe3O4-PVA were measured using a differential scanning calorimeter with a non-isothermal decomposition method. The kinetics of thermal decomposition of Fe3O4-PVA were also investigated. Over the course of this study, it was determined that the resulting drug carrier Fe3O4-PVA exhibited high drug loading levels and excellent release levels.

6.
J Am Chem Soc ; 141(7): 3198-3206, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30685973

RESUMO

Nanocube (NC) assemblies display complex superlattice behaviors, which require a systematic understanding of their nucleation and growth as well transformation toward construction of a consistent superlattice phase diagram. This work made use of Fe3O4 NCs with controlled environments, and assembled NCs into three-dimensional (3D) superlattices of simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc), acute and obtuse rhombohedral (rh) polymorphs, and 2D superlattices of square and hexagon. Controlled experiments and computations of in situ and static small-angle X-ray scattering (SAXS) as well as electron microscopic imaging revealed that the fcc and bcc polymorphs preferred a primary nucleation at the early stage of NC assembly, which started from the high packing planes of fcc(111) and bcc(110), respectively, in both 3D and 2D cases. Upon continuous growth of superlattice grain (or domain), a confinement stress appeared and distorted fcc and bcc into acute and obtuse rh polymorphs, respectively. The variable magnitudes of competitive interactions between configurational and directional entropy determine the primary superlattice polymorph of either fcc or bcc, while emergent enhancement of confinement effect on enlarged grains attributes to late developed superlattice transformations. Differently, the formation of a sc polymorph requires a strong driving force that either emerges simultaneously or is applied externally so that one easy case of the sc formation can be achieved in 2D thin films. Unlike the traditional Bath deformation pathway that involves an intermediate body-centered tetragonal lattice, the observed superlattice transformations in NC assembly underwent a simple rhombohedral distortion, which was driven by a growth-induced in-plane compressive stress. Establishment of a consistent phase diagram of NC-based superlattices and reconstruction of their assembly pathways provide critical insight and a solid base for controlled design and scalable fabrication of nanocube-based functional materials with desired superlattices and collective properties for real-world applications.

7.
Materials (Basel) ; 13(1)2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31892108

RESUMO

A 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) acrylate, (6-oxidodibenzo [c,e][1,2] oxaphosphinin-6-yl) methyl acrylate (DOPOAA), has been prepared. Copolymers of styrene (St) and DOPOAA were prepared by emulsion polymerization. The chemical structures of copolymers containing levels of DOPOAA were verified using Fourier transform infrared (FT-IR) spectroscopy and 1H nuclear magnetic resonance (1H-NMR) spectroscopy. The thermal properties and flame-retardant behaviors of DOPO-containing monomers and copolymers were observed using thermogravimetric analysis and micro calorimetry tests. From thermogravimetric analysis (TGA), it was found out that the T5% for decomposition of the copolymer was lower than that of polystyrene (PS), but the residue at 700 °C was higher than that of PS. The results from micro calorimetry (MCC) tests indicated that the rate for the heat release of the copolymer combustion was lower than that for PS. The limiting oxygen index (LOI) for combustion of the copolymer rose with increasing levels of DOPOAA. These data indicate that copolymerization of the phosphorus-containing flame-retardant monomer, DOPOAA, into a PS segment can effectively improve the thermal stability and flame retardancy of the copolymer.

8.
Adv Mater ; 25(23): 3192-6, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23657839

RESUMO

A new kind of nitrogen-doped graphene/carbon nanotube nanocomposite can be synthesized by a facile hydrothermal process under mild conditions, which exhibits synergistically enhanced electrochemical activity for the oxygen reduction reaction. This research provides a new route to access a metal-free electrocatalyst with high activity under mild conditions.


Assuntos
Grafite/química , Nanotubos de Carbono/química , Nitrogênio/química , Catálise , Técnicas Eletroquímicas , Oxirredução , Oxigênio/química
9.
ACS Nano ; 6(1): 712-9, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22136425

RESUMO

Nitrogen-doped graphene (GN) has great potential applications in many fields because doping with nitrogen can alter the electrical properties of graphene. It is still a challenge to develop a convenient method for synthesis of GN sheets. In this paper, we first report the synthesis of a nitrogen-doped graphene/ZnSe nanocomposite (GN-ZnSe) by a one-pot hydrothermal process at low temperature using graphene oxide nanosheets and [ZnSe](DETA)(0.5) nanobelts as precursors. ZnSe nanorods composed of ZnSe nanoparticles were found to deposit on the surface of the GN sheets. The results demonstrated that [ZnSe](DETA)(0.5) nanobelts were used not only as the source of ZnSe nanoparticles but also as the nitrogen source. Interestingly, it was found that the as-prepared nanocomposites exhibit remarkably enhanced electrochemical performance for oxygen reduction reaction and photocatalytic activities for the bleaching of methyl orange dye under visible-light irradiation. This facile and catalyst-free approach for depositing ZnSe nanoparticles onto the graphene sheets may provide an alternative way for preparation of other nanocomposites based on GN sheets under mild conditions, which show their potential applications in wastewater treatment, fuel cells, energy storage, nanodevices, and so on.


Assuntos
Grafite/química , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Nitrogênio/química , Compostos de Selênio/química , Água/química , Compostos de Zinco/química , Catálise/efeitos da radiação , Condutividade Elétrica , Temperatura Alta , Luz , Teste de Materiais , Nanoestruturas/ultraestrutura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...